and fish & wildlife protections. Significant quantities of energy are stored in hydroelectric reservoirs today and dispatched when needed to meet peak loads. Thus, additional energy storage has less value for providing resource adequacy in the Northwest than it does in regions that have little or no energy storage today.

5.3.5.4 Demand Response ELCC

Demand response (DR) represents a resource where the system operator can call on certain customers during times of system stress to reduce their load and prevent system-wide loss-of-load events. However, DR programs have limitations on how often they can be called and how long participants respond when they are called. DR in this study is represented as having a maximum of 10 calls per year with each call lasting a maximum of 4 hours. This is a relatively standard format for DR programs, although practice varies widely across the country. This study also assumes perfect foresight of the system operator such that a DR call is never "wasted" when it wasn't actually needed for system reliability.

Figure 26: Cumulative and Marginal ELCC of DR

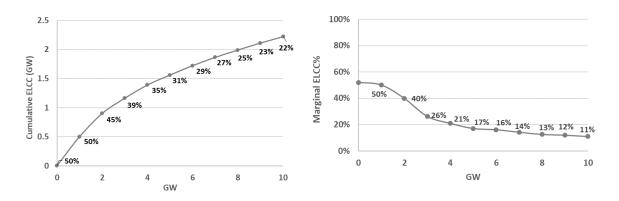


Figure 26 shows the cumulative and marginal ELCC of DR at increasing levels of penetration. Due to the limitations on the number of calls and duration of each call, DR has an initial ELCC of approximately 50%. Similar to energy storage, conventional 4-hour DR has less value in the Pacific Northwest than in other