
## Land Use

| Technology Type            | Size<br>(acres / MW) | Size Std. Dev.<br>(acres / MW) |
|----------------------------|----------------------|--------------------------------|
| Photovoltaics <10 kW       | 3.2                  | 22                             |
| Photovoltaics 10 100 kW    | 5.5                  | 0.7                            |
| Photovoltaics 100 1,000 kW | 5.5                  | 0.7                            |
| Photovoltaics 1 10 MW      | 6.1                  | 1.7                            |
| Wind <10 kW                | 30                   | n/a                            |
| Wind 10 100 kW             | 30                   | n/a                            |
| Wind 100- 1000 kW          | 30                   | n/a                            |
| Wind 1 10 MW               | 44.7                 | 25.0                           |
|                            |                      |                                |

Here's what I'm coming up with,



Literally using a ruler on a screen to get the best read of MW since I couldn't find it in any of their tables On-shore wind 7145 MW \* 44.7 acres/MW from NREL \* 0.001563 sq miles/acre = 500 sq miles

Solar 855 MW \* 6.1 acres/MW from NREL \* 0.001563 sq miles/acre = 8 sq miles

Didn't find conversion factors for batteries in those references or a quick search, but from the graph it looks like it is about 5750 MW battery (didn't see what duration and that affects the land area too, maybe it is 6 hours.)

I asked my husband if he'd like to give it a try. He came up with 65 acres. So that doesn't register next to the wind and solar.

-----